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Introduction. In practice, we can see more problem fitting the model
y=Bi fi AB2 fo +...+B, f,+e; where y;is the i th response, f;;1is the j th
basis function evaluated at the i ™ observation, and e; is the i h residual
error [1 — 2]. In the Wolfram Mathematica 6.0, the built-in function Fit
finds a least-squares fit to a list of data as a linearcombination of the
specified basis functions. The functions Regress and DesignedRegress
provided in this package augment Fitr by giving a list of commonly
required diagnostics such as the coefficient of determination RSquared,
the analysis of variance table ANOVATable, and the mean squared error
EstimatedVariance. The output of regression functions can be controlled
so that only needed information is produced. The Linear Regression
provides analogous functionality for nonlinear models.

Material and methods. The basis functions f; specify the predictors
as functions of the independent variables. The resulting model for the
response variable is:

H=f(b+b f+bf), (1)

Estimates of the coefficients b,,...,b, are calculated to minimize:

the error or residual sum of squares. For example, simple linear regression
is accomplished by defining the basis functions as f;=1 and f,=x, in which
case b; and bs are found to minimize:

H

> [H - (b +bfi ) (3)

i=l
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The arguments of Regress are of the same form as those of Fit.
The data can be a list of vectors, each vector consisting of the observed
values of the independent variables and the associated response. The basis
functions f; must be functions of the symbols given as variables. These
symbols correspond to the independent variables represented in the data.
By default, a constant function f =1 is added to the list of basis functions
it not explicitly given in the list of basis functions.

The data can also be a vector of data points. In this case, Regress
assumes that this vector represents the values of a response variable with
the independent variable having values 1, 2, ....

Results of the Measurements. Ways of specifying data in Regress.
This loads the package.:
<< LinearRegression’

For example, this data contains ordered pairs of a H( A/m ) and a f (Gz):
Data={{100,330},{200,336}, {300,380}, {400,395},{500,430}, {600,490},
{700,557}, {800,590},{900,680}};

This is a plot of the data:

ListPlot[{data}
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Fig. 1. This is a plot of the data points of the functions H = f (f), A/m, f-T'n

This is the output for fitting the model:
yeby+ by x+ by X’ +e (4)

Regress|data,{1,x°},x]
You can use Fit if you want only the fitted function:
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Fit{data,{1,x° ]

H = 3282 +0.043f +0.00043 £ A /M (5)

Where f -,

Two of the options of Regress influence the method of calculation.
IncludeConstant has a default setting True, which causes a constant term
to be added to the model even if it is not specified in the basis functions. To
fit a model without this constant term, specify IncludeConstant -> False
and do not include a constant in the basis functions.

The Weights option allows you to implement weighted least squares
by specifying a list of weights,one for each data point;the default Weights -
= Automatic implies a weight of unity for each data point. When Weights -
> {w,...,w,},the parameter estimates are chosen to minimize the weighted
sum of squared residuals:

; 'V‘)z-f:"fi2 - (6)

Weights can also specify a pure function of the response. For
example, to choose parameter estimates to minimize:

Z \/yr. e,-z s (7)

set Weights -> (Sqrt [ #] & ).

The options RegressionReport and BasisNames affect the form
and content of the output.If RegressionReport is not specified, Regress
automatically gives a list including values for Parameteriable, RSquared,
AdjustedRSquared, EstimatedVariance and ANOVATable. This set of
objects comprises the default Swmmary. The option RegressionReport
can be used to specify a single object or a list of objects so that more (or
less) than the default set of results is included in the output.
RegressionReportValues| Regress | gives the objects that may be included
in the RegressionReport list for the Regress function.

With the option BasisNames, vyou can label the headings of
predictors in tables such as ParameterTable and ParameterCiTable.

The regression functions will also accept any option that can be
specified for SingularValueList or StudentTCI. In particular,the numerical
tolerance for the internal singular value decomposition is specified using
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Tolerance, and the confidence level for hypothesis testing and confidence
intervals is specified using Confidencelevel.

ANOVATable, a table for analysis of variance, provides a comparison
of the given model to a smaller one including only a constant term. If
IncludeConstant->Fulse 1s specified, then the smaller model is reduced to
the data. The table includes the degrees of freedom, the sum of squares and
the mean squares due to the model (in the row labeled Model) and due to
the residuals (in the row labeled Error). The residual mean square is also
available in EstimatedVariance, and is calculated by dividing the residual
sum of squares by its degrees of freedom. The F-test compares the two
models vsing the ratio of their mean squares. If the value of F is large, the
null hypothesis supporting the smaller model is rejected.

To evaluate the importance of each basis function,you can get
information about the parameter estimates from the parameter table
obtained by including  ParameterTable in the list specified by
RegressionReport.  This table includes the estimates,their standard
errors,andr-statistics for testing whether each parameter is zero. Thep-values
are calculated by comparing the obtained statistic to thesdistribution withn-
pdegrees of freedom,wherenis the sample size andpis the number of
predictors.Confidence intervals for the parameter estimates,also based on
therdistribution,can be found by specifying ParameterCITable.
ParameterConfidenceRegion  specifies the ellipsoidal joint confidence
region of all fit parameters. ParameterConfidenceRegion [{f; .fi 2....}]
specifies the joint conditional confidence region of the fit parameters
associated with basis functions {f; 1.,/; 2.... }.a subset of the complete set of
basis functions.

The square of the multiple correlation coefficient is called the
coefficient of determinationR”,and is given by the ratio of the model sum of
squares to the total sum of squares.It is a summary statistic that describes
the relationship between the predictors and the response variable.
AdjustedRSquared 1s defined as:

R, = 1- (n-1)/(n-p)) (1-RY), (8)

and gives an adjusted value that you can use to compare subsequent subsets
of models. The coefficient of variation is given by the ratio of the residual
root mean square to the mean of the response variable If the response is
strictly positive,this is sometimes used to measure the relative magnitude of
error variation.

Each row in MeanPredictionCITable gives the confidence interval
for the mean response at each of the wvalues of the independent
variables Each row in SinglePredictionCiTable gives the confidence
interval for a single observed response at each of the values of the
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independent variables. MeanPredictionCITable gives a region likely to
contain the regression curve,while SinglePredictionCITable gives a region
likely to contain all possible observations.

The following gives the residuals,the confidence interval table for
the predicted response of single observations,and the parameter joint
confidence region:
regress—Regress/data,{1,x°},x,RegressionReport - {FitResiduals,
SinglePredictionClTable, ParameterConfidenceRegion}]

This is a list of the residuals extracted from the output:
errors=FitResiduals/. regress

The observed response, the predicted response, the standard errors of
the predicted response, and the confidence intervals may also be extracted:
{observed predicted,se,ci}=Transpose/[(SinglePredictionClTable/regress)
[L11L;

This plots the predicted responses against the residuals:
ListPlot[Transpose[{predicted,errors}]]

Here the predicted responses and lower and upper confidence limits
are paired with the corresponding x values:

(xval =data [ | All1 ] ];

Predicted = Transpose | { xval, predicted ! |;
lowerCI = Transpose [ { xval, First / @ ci } [;
upperCIl = Transpose [ { xval, Last/ @ ci} ]);
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Fig. 2. This plots the predicted responses against the residuals

This displays the raw data, fitted curve, and the 95 % confidence
intervals for the predicted responses of single observations.
ListPlot[ {data,predicted,lowerCIlupperCI }.Joined {False, True, True, True},
PlotStyle { Automatic,Automatic,{Dashing[{.05,.05}],Gray},{Dashing][{.0,

.05}],Gray} } |
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Fig. 3. This displays the raw data, fitted curve, and the 95 % confidence
intervals for the predicted responses of single observations

Grapfics may be vsed to display an Ellipsoid object. This 1s the
joint 95 % confidence region for the regression parameters.

Graphics{ParameterConfidenceRegion/.regress
Axes = True, AxesLabel <> { " Constant ", "x Squared "},
AspectRatio 2 1]
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Fig. 4. Graphics may be used to display an Ellipsoid object. This is the
joint 95 %  confidence region for the regression parameters.

This package provides numerous diagnostics for evaluating the data
and the fit. The HatDiagonal gives the leverage of each point, measuring
whether each observation of the independent variables is unusual. CookD
and PredictedResponseDelta are influence diagnostics, simultancously
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measuring whether the independent variables and the response variable are
unusual. Unfortunately, these diagnostics are primarily useful in detecting
single outliers. In particular, the diagnostics may indicate a single outlier,
but deleting that observation and recomputing the diagnostics may indicate
others. All these diagnostics are subject to this masking effect.

Some diagnostics indicate the degree to which individual basis
functions contribute to the fit, or whether the basis functions are involved
in a collinear relationship. The sum of the elements in the
SequentialSumQOfSquares vector gives the model sum of squares listed in
the ANOVATable. Each element corresponds to the increment in the model
sum of squares obtained by sequentially adding each nonconstant basis
function to the model. Each element in the PartialSumOfSquares vector
gives the increase in the model sum of squares due to adding the corres-
ponding nonconstant basis function to a model consisting of all other basis
functions. SequentialSumOfSquares 1s useful in determining the degree of a
uninvariate polynomial model, while PartialSumOfSquares 1s useful in
trimming a large set of predictors. Variancelnflation or Eigenstructurelable
may also be used for predictor set trimming.

The Durbin—Watson d statistic is used for testing the existence of a
first-order autoregressive process. The statistic takes on values between 0
and 4, with values near the middle of that range indicating uncorrelated
errors, an underlying assumption of the regression model. Critical values for
the statistic vary with sample size, the number of parameters in the model,
and the desired significance. These values can be found in published tables.

Other statistics not mentioned here can be computed with the help of
the catcher matrix. This matrix catches all the information the predictors
have about the parameter vector. This matrix can be exported from
Regress by specitying CatcherMatrix with the RegressionReport option.

Frequently, linear regression is applied to an existing design matrix
rather than the original data. A design matrix is a list containing the basis
functions evaluated at the observed values of the independent variable. If
your data is already in the form of a design matrix with a corresponding
vector of response data, you can use DesignedRegress for the same
analyses as provided by Regress. DesignMatrix puts your data in the form
of a design matrix.

DesignMatrix takes the same arguments as Regress. It can be used
to get the necessary arguments for DesignedRegress, or to check whether
you correctly specified your basis functions. When you use DesignMatrix,
the constant term is always included in the model unless IncludeConstant-
=>False 1s specified. Every option of Regress except IncludeConstant 1s
accepted by DesignedRegress.

RegressionReportValues[DesignedRegress] gives the values that may be
included in the RegressionReport list for the DesignedRegress function.
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This is the design matrix used in the previous regression analysis:
mat=DesignMatrix[data,{1,x°},x]
{{1,10000},{1,40000},{1,90000},{1,160000},{1,250000},{1,360000},
11,490000%,{1,640000},{1,810000}% }

Here is the vector of observed responses:
response=dataf[All,-1]]

{330,336,380,395,430,490,557,590,680}

Summary. The result of DesignedRegress is equivalent to that of Regress:
DesignedRegress{mat,response,BasisNames =2 {"Constant","x Squared"}]

DesignedRegress will also accept the singular value decomposition
of the design matrix. If the regression is not weighted, this approach will
save recomputing the design matrix decomposition.

This is the singular value decomposition of the design matrix:
svd=SingularValueDecompositionfmat];

When several responses are of interest, this will save recomputing the
design matrix decomposition:

DesignedRegress[svd,response, RegressionReport = BestFitParameters]
1330,336,380,395,430,490,557 590,680} RegressionReport = BestFitParameters)]

The fitted function; H = 328.2 +0.043f +0.00043 £ , (A / m) best fits
parameters.
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