ВИЗНАЧЕННЯ ФАКТОРІВ І ПАРАМЕТРІВ ПРОЦЕСУ ПОПЕРЕДНЬОЇ ОЧИСТКИ ЗЕРНА

Михайлов Є.В., к.т.н.,
Дудка В.С., асп.¹
Білокопитов О.О., асп.¹
Бойко С.С., магістр.
Таврійський державний агroteхнологічний університет
тел. (0619) 42-21-32

Анотація – в роботі проведено визначення факторів і параметрів процесу попередньої очистки зерна ворохоочисника скальператорного типу.

Ключові слова – зерно, зерновий ворох, ворохоочисник, фактори і параметри очистки, очистка зерна, машина попередньої очистки зерна, скальператор.

Постановка проблеми. Для більш точного визначення умов переходу зернового потоку з лотка-інтенсифікатора на циліндричне решето (ЦР) в зерноочисних машинах попередньої очистки скальператорного типу потрібен аналіз факторів, параметрів та режимів роботи машини. Проведений аналіз дозволить мати підставу для виділення основних технологічних, кінематичних і конструктивних параметрів досліджуваного процесу.

Аналіз останніх досліджень. В останніх дослідженнях визначаються такі фактори і параметри: зазор між поверхнею скатної дошки і циліндричним решетом; діаметр решета; кутова швидкість його обертання; кут нахилу скатної дошки; кут подачі зернового вороху; довжина циліндричного решета; розміри отворів решета; подача вихідного матеріалу; кількість сходового матеріалу; кількість проходового матеріалу; засміченість та вологість зерна [1,2]

Мета дослідження. Визначити фактори і параметри процесу попередньої очистки зерна ворохоочисника скальператорного типу.

Основна частина.

Проведений аналіз дозволяє виділити основні технологічні, кінематичні і конструктивні параметри досліджуваного процесу.

Кінематичний режим роботи ворохоочисника визначається виходячи з радіуса і кутової швидкості циліндричного решета ω₀ і очисної щітки ωₚ (Рис. 1.в).

© к.т.н. Михайлов Є.В., інженер Дудка В.С., інженер Білокопитов О.О., інженер Бойко С.С.
¹ - науковий керівник к.т.н., доц. Михайлов Є.В.
Для переводу зернового матеріалу в псевдорозріджений стан під лотка-інтенсифікатор подається стиснене повітря при визначенні подачі Q і тиску P повітряного потоку. При цьому зернова суміш надходить до решета із середньою швидкістю \(V_c \). Над шаром, що рухається, у зоні лотка-інтенсифікатора виділення бур'яністих домішок, а також утрати повноцінного зерна у відходи визначається максимальною швидкістю \(V_b \) повітряного потоку в сепараційній камері.

Поверхня лотка-інтенсифікатора нахилена до горизонталі під кутом \(\alpha \) (Рис. 1 а), при цьому положення його щодо циліндричного решета з радіусом R визначається кутом подачі \(\beta_a \) установки нижнього кінця лотка. Нижній ряд зерен сковзає по поверхні лотка і надходить на поверхню циліндра в крапку A; верхній ряд зерен надходить на поверхню циліндра в крапку B, обумовлену кутом подачі \(\beta_{об} \). Положення очисної щітки щодо горизонтального діаметра решета фіксується при значеннях кута \(\beta_{цц} \).

На напрямок і інтенсивність руху струменів повітря минаючих через жалюзі зі швидкістю \(V_J \) у внутрішню порожнину барабана впливають параметри (Рис. 1 в): кут нахилу жалюзійної перегородки щодо горизонталі \(\delta_1 \), кут нахилу стулок жалюзі до горизонталі \(\delta_2 \), ширина прогохідного перетину \(b_ж \), тиск повітря P та його подача Q.

До конструктивних параметрів лотка-інтенсифікатора відносяться (Рис. 1 в): \(L_a \) - довжина, \(t_a \) - товщина, \(\gamma_a \) - кут виходу струменів повітря з щілин, \(b_a \) - ширина щілин, \(l_a \) - відстань між щілинами (крок).

На процес сепарації у ворохоочиснику впливають також: тип, форма і розміри вічок решітків поверхні; діаметр циліндричного решета; ширина робочої зони сепаратора; форма і розміри сепараційної камери; матеріал повітропроникних і решітків поверхні; час обробки.

При псевдорозрідженні зернових сумішей на процес розшарування і сепарації впливають фізико-механічні властивості вихідного матеріалу: сипкість; натура; засміченість; вологість; коефіцієнти внутрішнього і зовнішнього тертя часток; розходження компонентів по розмірах; співвідношення кількості легких, дрібних і великих домішок; розходження компонентів за формою, станом поверхні, щільністі, аеродинамічним властивостям, пружності.

Аналізуючи умови переходу зернового потоку з лотка-інтенсифікатора на циліндричне решето (Рис. 1) приймемо наступні допущення:
- опір повітря відсутній;
- взаємодія часток, що надійшли на поверхню лотка і ЦР, не враховується;
- частки зернового матеріалу є абсолютно твердими тілами;
- розглядаємо частки як матеріальні точки при їхньому відносному русі по поверхні решета;
- коефіцієнт триття точки об поверхню барабана постійний і не залежить від швидкості її руху і тиску;
- швидкість виходу струменів повітря з отворів лотка-інтенсифікатора постійна по довжині і ширині лотка;
- частка рухається по зовнішній поверхні циліндра з відставанням.

При цьому на крапку M буде діяти сила ваги G нормальна реакція поверхні N, сила триття F, тангенціальна сила інерції Cp і нормальна сила інерції Cr.

Просування зернівок через поверхню циліндричного решета сприяє швидкість шару V\textsubscript{c} зернового матеріалу, що розкладається на дві складові – нормальну V\textsubscript{c}^n спрямовану по радіусі усередину циліндра, і тангенціальну V\textsubscript{c}^r.

При влучні часток у зону струменя повітря, що виходить із щілин лотка-інтенсифікатора зі швидкістю V\textsubscript{l}, на шар зерна будуть діяти (Рис. 1 б): R - сила впливу повітряного потоку; S - складова сили R на переміщення зернового шару; T - складова сили R на пеевдозрідження матеріалу; F\textsubscript{l} - сила триття шару зерна об бічні стінки лотка; P\textsubscript{1} - сила нормального тиску шару зерна на поверхню лотка; P\textsubscript{2} - гравітаційна складова на переміщення шару матеріалу.

У результаті отриманої априорної інформації, вивчення літературних джерел можна припустити, що класичний математичний опис розглянутого процесу представляє велику складність через велику кількість, як внутрішніх, так і зовнішніх сил, що діють на зерновий матеріал при різних етапах її проходження по робочому органі.

Якщо врахувати, що багато вхідних параметрів є випадковими в ймовірноності-статистичному змісті, то і модель функціонування досліджуваного очисника вороху виявляється досить складною для аналізу, синтезу й оптимізації технологічного процесу попереднього очищення зерна.

Тому користуючись даними досліджень було виділено 8 факторів:
- подача повітря x\textsubscript{1}, м3/с;
- подача зернового матеріалу x\textsubscript{2}, кг/с;
- коефіцієнт живого перетину лотка-інтенсифікатора x\textsubscript{3}, %;
- кут повороту лотка-інтенсифікатора щодо горизонталі x\textsubscript{4}, град;
- кут виходу струменів повітря з щілин лотка-інтенсифікатора x\textsubscript{5}, град;
- кут нахилу жалюзійної перегородки щодо горизонталі x\textsubscript{6}, град;
- кут нахилу стулок жалюзи до горизонталі x\textsubscript{7}, град;
- коефіцієнт живого перетину жалюзійного повітровозподільника x\textsubscript{8}, %.
Рисунок 1 – Схема до визначення умов переходу зернового потоку з лотка-інтенсифікатора на циліндричне решето:
 а) схема сил, діючих на зерно без впливу повітря;
 б) схема сил, діючих при впливі повітря на зерно крізь лоток-інтенсифікатор;
 в) схема при подачі повітря до лотка-інтенсифікатора та жалюзійного розподілювача та їх параметри.

Як критерії оптимізації приймали:
- питому продуктивність $y_1, t/(м·год)$;
- утрати повноцінного зерна у відходи $y_2, %$;
- повноту виділення бур'янної домішки $y_3, %$.

Висновки. Визначені основні фактори, що впливають на робочий процес пневморешітного сепаратора. До них відносяться: Q_n – по-
дча повітря, м³/с; Q₃ – подача зернового матеріалу, кг/с; fₙ – коефіцієнт живого перетину лотка-інтенсифікатора, %; αₙ – кут повороту лотка-інтенсифікатора щодо горизонталі, град; γₙ – кут виходу струменів повітря з щілин лотка-інтенсифікатора, град; δ₁ – кут нахилу жалюзійної перегородки щодо горизонталі, град; δ₂ – кут нахилу стулок жалюзі до горизонталі, град; fₓ – коефіцієнт живого перетину жалюзійного повітророзподільника, %.

Література.
1. Вольникін В.В. Повышение эффективности процесса отделения крупных примесей из зернового вороха скальператором : автореф. дис. ... канд. техн. наук : спец. 05.20.01 – «Технологии и средства механизации сельского хозяйства» / В.В. Вольникін; Челябинский государственный агронинженерный университет. - Челябинск, 2007.-24 с.
2. Воинков В.П. Повышение эффективности очистки сон от дурнишника на фрикционном сепараторе барабанного типа : автореф. дис. ... канд. техн. наук : спец. 05.20.01 – «Технологии и средства механизации сельского хозяйства» / В.П. Воинков; Курганская государственная сельскохозяйственная академия имени Т.С. Мальцева - Челябинск, 2007.-20 с.
3. Аблогін М. М. Обґрунтування технологічної схеми і параметрів пристрою для сепарації обчесаного вороху рису: автореф. дис. ... канд. техн. наук : спец. 05.20.01 – «Механізація сільськогосподарського виробництва» / М. М. Аблогін; Таврійський державний агротехноло гічний університет. – Мелітополь, 1998. – с. 17

ОПРЕДЕЛЕНИЕ ФАКТОРОВ И ПАРАМЕТРОВ ПРОЦЕССА ПРЕДВАРИТЕЛЬНОЙ ОЧИСТКИ ЗЕРНА

Михайлов Е.В., Дудка В.С., Белокопитов А.А., Бойко С.С.

Аннотация

В работе проведено изучение факторов и параметров процесса предварительной очистки зерна ворохоочистителя скальператорного типа.

DEFINING OF FACTORS AND PARAMETERS OF GRAIN PRECLEANING PROCESS

Ye. Mikhaylov., V. Dudka., A. Belokopytov., S. Boyko.

Summary

Defining of factors and parameters of grain pre-cleaning process of scalperator type cleaner is realized.